Ice-driven CO2 feedback on ice volume

نویسنده

  • W. F. Ruddiman
چکیده

The origin of the major ice-sheet variations during the last 2.7 million years is a long-standing mystery. Neither the dominant 41 000-year cycles in δ18O/ice-volume during the late Pliocene and early Pleistocene nor the latePleistocene oscillations near 100 000 years is a linear (“Milankovitch”) response to summer insolation forcing. Both responses must result from non-linear behavior within the climate system. Greenhouse gases (primarily CO2) are a plausible source of the required non-linearity, but confusion has persisted over whether the gases force ice volume or are a positive feedback. During the last several hundred thousand years, CO2 and ice volume (marine δ18O) have varied in phase at the 41 000-year obliquity cycle and nearly in phase within the ∼100 000-year band. This timing rules out greenhouse-gas forcing of a very slow ice response and instead favors ice control of a fast CO2 response. In the schematic model proposed here, ice sheets responded linearly to insolation forcing at the precession and obliquity cycles prior to 0.9 million years ago, but CO2 feedback amplified the ice response at the 41 000-year period by a factor of approximately two. After 0.9 million years ago, with slow polar cooling, ablation weakened. CO2 feedback continued to amplify ice-sheet growth every 41 000 years, but weaker ablation permitted some ice to survive insolation maxima of low intensity. Step-wise growth of these longerlived ice sheets continued until peaks in northern summer insolation produced abrupt deglaciations every ∼85 000 to ∼115 000 years. Most of the deglacial ice melting resulted from the same CO2/temperature feedback that had built the ice sheets. Several processes have the northern geographic origin, as well as the requisite orbital tempo and phasing, to be candidate mechanisms for ice-sheet control of CO2 and their own feedback. Correspondence to: W. F. Ruddiman (rudds2@ntelos.net)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Can a Convective Cloud Feedback Help to Eliminate Winter Sea Ice at High CO2 Concentrations?

Winter sea ice dramatically cools the Arctic climate during the coldest months of the year and may have remote effects on global climate as well. Accurate forecasting of winter sea ice has significant social and economic benefits. Such forecasting requires the identification and understanding of all of the feedbacks that can affect sea ice. A convective cloud feedback has recently been proposed...

متن کامل

Orbital changes and climate

At the 41,000-period of orbital tilt, summer insolation forces a lagged response in northern ice sheets. This delayed ice signal is rapidly transferred to nearby northern oceans and landmasses by atmospheric dynamics. These ice-driven responses lead to late-phased changes in atmospheric CO2 that provide positive feedback to the ice sheets and also project ‘late’ 41-K forcing across the tropics ...

متن کامل

High-resolution ice-volume estimates for the early Miocene: Evidence for a dynamic ice sheet in Antarctica

Ice-volume estimates for the early Miocene (23–16 Ma ATS) were determined by applying dO to sea-level calibrations to high-resolution dO records from ODP Sites 1090 and 1218. These calibrated records indicate that ice-volume ranged between 50% and 125% of the present day East Antarctic Ice Sheet (EAIS) during most of the early Miocene (23–17 Ma). Maximum icevolume occurred at each of the early ...

متن کامل

The evolution of pCO2, ice volume and climate during the middle Miocene

The middle Miocene Climatic Optimum (17–15 Ma; MCO) is a period of global warmth and relatively high CO2 and is thought to be associated with a significant retreat of the Antarctic Ice Sheet (AIS). We present here a new planktic foraminiferal dB record from 16.6 to 11.8 Ma from two deep ocean sites currently in equilibrium with the atmosphere with respect to CO2. These new data demonstrate that...

متن کامل

Delayed CO2 emissions from mid-ocean ridge volcanism as a possible cause of late-Pleistocene glacial cycles

The coupled 100,000 year variations in ice volume, temperature, and atmospheric CO2 during the late Pleistocene are generally considered to arise from a combination of orbital forcing, ice dynamics, and ocean circulation. Also previously argued is that changes in glaciation influence atmospheric CO2 concentrations through modifying subaerial volcanic eruptions and CO2 emissions. Building on evi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006